
Visionaire Studio 5.x

Tutorial:
Creating Speech Bubbles
with the“Argo Bubbles” script
The Argo Bubbles script creates speech bubbles for talking characters in Visionaire Studio. If you want to
use the script in your game, you don’t have to read and understand this tutorial. Everything you need to
know is explained inside the script.

For a deeper understanding of how the speech bubbles are created and how they replace the text dis-
played by Visionaire, keep on reading. This tutorial might help, if you want to modify the Argo Bubbles or
build your own bubble (or non-bubble) script. Basic Lua knowledge is required. Note that the pieces of
code are explained in a logical order, not necessarily in the order they appear in the final script.

Thanks to Visionaire user Turbomodus whoworked out the basics. The Argo Bubbles are based on his work.

1. Here’s the plan

Our goal is to put a speech bubble graphic behind
the text, whenever a character is talking. This
graphic needs to adapt to the individual dimensions
of that text. Additionally we want to add a pointer
(that little handle at the bubble) pointing at the
character.

What we will actually do is stop Visionaire from dis-
playing the text at all. Instead we take it, create our
bubble around it and then tell Visionaire to display
the whole thing at the right position.

So we need to do the following (the numbers of the
list do not correspond to the chapters of this tutori-
al):

1. Get each character text just before it gets dis-
played and save it

2. Prevent Visionaire from displaying the text
3. Create a speech bubble containing the saved

text
4. Tell Visionaire to show that speech bubble
5. Tell Visionaire to hide the bubble as soon as the

text is supposed to disappear

2. Get the text, hide and keep it

Whenever a text is about to be displayed in Vision-
aire, the textStarted event is triggered. By using
the appropriate event handler, we can react to that
event and execute a function. Let’s call that function
show_argo_bubble.

The event automatically passes an object to our
function. Since it is a text object, we call it text. Now
before doing anything, we checkwhether this text is
spoken by a character at all. Because if it isn’t, we
don’t want to create a speech bubble and leave ev-
erything as it is. We can use the Owner property of
the text object to check that.

If the text does belong to a character, we take it and
save a table of three of the object’s properties in our
very own local table called bubbles:

■ Text: the current text itself
■ Owner: the name of the character
■ Background: whether it’s background text or

not

Then we set text.CurrentText to an empty string,
so Visionaire has nothing to display – no character
texts will now show up anmyore.

The bubbles table holds all the texts that are sup-
posed to be displayed in a speech bubble right now.
Since it is possible for several characters to speak at
the same time, this table may contain more than
one item at once – hence it’s a table. But most of the
time there will probably be only one item. Or none.

registerEventHandler("textStarted",
"show_argo_bubble")

local bubbles = {}

function show_argo_bubble(text)
if text.Owner:getId().tableId == eCharacters then
bubbles[text:getId().id] = {
Text = text.CurrentText,
Owner = text.Owner:getName(),
Background = text.Background
}

text.CurrentText = ""
end
end

In case this file comes without the script itself, download it here (along with a small demo project):
https://wiki.visionaire-tracker.net/wiki/Compiled_Index_of_Lua_Scripts_for_Visionaire_Studio

Let'� ��l�
Ar�o B��b���!

Visionaire Studio 5.x: Argo Bubbles tutorial 2

A bubble shall be visible as long as the text is held in
the bubbles table, so we need to remove it as soon
as the text stops.

There is another event called textStopped which
gets fired whenever a text is about to get hidden
again. We can react to that event through an event
handler, just as we did before. The
destroy_argo_bubble() function deletes the text
with the appropriate id from our bubbles table by
setting it to nil and thus will stop displaying the
bubble.

3.“Infiltrate” the render pipeline

Until now, all we have done is hide the character text
and save it in a table for as long as it’s supposed to
be displayed. Now we need to setup our own dis-
play routine.

While the game is running, the Visionaire player
continuously re-renders the screen (about 50 times
per second). We can add a custom draw function to
this render process, which will take the bubbles ta-
ble and display a speech bubble for each text item
inside. So as soon as a text is saved into the table, it
gets thrown into the rendering, and as soon as it’s
removed, the speech bubble will disappear again.

As you can see, we’re not only adding one but two
functions to the render process here:

■ Regular character texts will be rendered on top
of the game’s interfaces (parameter 1): When
the player opens the inventory and looks at an
item, that speech bubble must overlay the in-
ventory, of course, or you might not see it.

■ Background texts however will be rendered be-
low interfaces (parameter 0): Your cursor is visi-
ble when executing background texts. Cursors
belong to interfaces and must show up in front
of speech bubbles, not below them.

The two functions bubble_below_interface() and
bubble_above_interface() are basically identical.
They loop through the bubbles table and call our
main bubble creation function create_bubble()
(whichwewill work on in the next step) for each text
item they find. The difference is: the first one only
displays background texts, the second one only
non-background texts.

4. Bubble creation

With that process set up, all that’s left to do is create
and draw the bubbles. This happens inside the
create_bubbles() function, which receives a text
item from the bubbles table as the val parameter.

The Argo Bubbles script offers the ability to define a de-
fault bubble style and custom styles, so you can switch
between different bubble designs and positionings
during the game. We’ll skip that for now and focus on
the speech bubble creation mechanism first. The han-
dling of multiple styles will be explained in chapter 5.

For now we’ll work with a single bubble_style ta-
ble. These are options the game developer (you) has
to define for his game when using the Argo Bub-
bles script. How should the bubbles look like, where
should they appear…

function destroy_argo_bubble(text)
bubbles[text:getId().id] = nil

end

registerEventHandler("textStopped",
"destroy_argo_bubble")

graphics.addDrawFunc("bubble_below_interface()", 0)
graphics.addDrawFunc("bubble_above_interface()", 1)

function bubble_below_interface()
for key, val in pairs(bubbles) do
if val.Background then
create_bubble(key, val)
end

end
end

function bubble_above_interface()
for key, val in pairs(bubbles) do
if not val.Background then
create_bubble(key, val)
end

end
end

function create_bubble(key, val)
-- this is where the magic happens...

end

local bubble_style = {
align_h = "center",
align_v = "top",
bubble_offset_x = 0,
bubble_offset_y = -25,
color = 0xffffff,
text_align = "center",
padding = {
top = 15,
right = 20,
bottom = 12,
left = 20

},
file_bubble = "vispath:gui/bubble.png",
ninerect_x = 20,
ninerect_y = 15,
ninerect_width = 30,
ninerect_height = 20,
file_pointer_bottom_right =
"vispath:gui/bubble_pointer_br.png",

file_pointer_bottom_left =
"vispath:gui/bubble_pointer_bl.png",

pointer_bottom_right_offset_x = -20,
pointer_bottom_left_offset_x = 0,
pointer_bottom_offset_y = 3,
file_pointer_top_right = "",
file_pointer_top_left = "",
pointer_top_right_offset_x = 0,
pointer_top_left_offset_x = 0,
pointer_top_offset_y = 0
}

Visionaire Studio 5.x: Argo Bubbles tutorial 3

4.1 Character information

First we get the character (the owner of the text) and
the text position Visionaire has calculated. This posi-
tion – above the character’s head – will be our refer-
ence position when calculating the position of the
bubble.We save it in the pos variable.

Next step is determine the facing direction of the
character. The positioning of the speech bubble as
well as the choice which bubble pointer to attach
may depend on where he looks (left or right).

However, if the horizontal alignment for the bubble
(align_h) is set to “left” or “right”, we will ignore the
“real” facing direction of the character. Because with
the bubble placed on one side of the character, it
doesn’t matter, which way he looks. The pointer al-
ways has to point in the opposite direction, towards
the character (see examples 3 and 4 in the picture
on page 6). That’s why we override the
char_facing variable in these cases, pretending the
character always looks towards the bubble.

4.2 Text and bubble dimensions

Nowwe calculate the text dimensions. That is height
andwidth of the (rectangular) space the lines of text
take up.

First we need to take care of line-breaks. Visionaire
saves them as
 tags – we have to replace them
with “real” line-breaks (\n) using Lua’s global substi-
tution method gsub.

You’ll notice that we split the
 string up into
two pieces and immediately glued them together
again with the two dot string operator (..). That
doesn’t seem to make much sense. However, the Vi-
sionaire editor treats
 as a line-break, even
when typed within a script. So if you do that, the ed-
itor messes up your script. Avoid writing the

string as a whole.

Next we use a special function to split our text into
lines utilizing those line-breaks. Thus we get a table
called lines holding our text line-by-line.

By looping through that lines table, we can deter-
mine thewidth (longest line) of our text through the
graphics.fontDimension() function. The height is
calculated using the font-size, the line gap
(VerticalLetterSpacing), and the number of lines.

By adding the padding values (as defined in
bubble_style), we get the dimensions of the
speech bubble (without pointer).

4.3 Bubble position

Now that we know howmuch space our bubble will
take up, we may calculate its desired position. The
script allows positioning through various style prop-
erties.

Horizontal bubble position

There are four horizontal alignment options
(align_h) available in the script: “left” of the charac-
ter, “right” of the character, “centered” above the
character, and “char_facing”, which aligns the bub-
ble according to the direction the character is cur-
rently facing. That last one results in left or right, too.
Onemay also define an offset (bubble_offset_x) to
further adjust the position.

The initial position for our calculations is the default
character text position, stored in the pos variable,
which is measured from the top left corner of the
scene. For drawing our bubble, we need to calculate
its top left corner in relation to the screen (≠ scene)
though, so – to also make it work for scrollable
scenes – we first need to substract the current
ScrollPosition. The rest of the math depends on
which of the alignment options applies.

“Right” is the easiest, because that’s where the bub-
ble appears, if we just keep the initial position: the

local char = Characters[val.Owner]
local pos = graphics.getCharacterTextPosition(char)

local txt = val.Text:gsub("<br/"..">", "\n")

local lines = graphics.performLinebreaks(txt)

local text_dim = {x = 0, y = 0}

for k, line in ipairs(lines) do
local tempdim = graphics.fontDimension(line)

if text_dim.x < tempdim.x then
text_dim.x = tempdim.x

end
end

text_dim.y = #lines * (char.Font.Size +
char.Font.VerticalLetterSpacing) -
char.Font.VerticalLetterSpacing

local bubble_dim = {x = 0, y = 0}

bubble_dim.x = text_dim.x +
bubble_style.padding.right +
bubble_style.padding.left
bubble_dim.y = text_dim.y +
bubble_style.padding.top +
bubble_style.padding.bottom

local char_facing = "right"

if bubble_style.align_h == "left" then
char_facing = "left"

elseif bubble_style.align_h ~= "right" then
if char.Direction > 90 and char.Direction < 270
then
char_facing = "left"
end

end

Visionaire Studio 5.x: Argo Bubbles tutorial 4

bubble’s left edge matches the character’s position.
If we want to align the bubble to the “left”, we have
tomove it by its width from the initial position to the
left. In order to “center” the bubble, we only have to
move it half its width to the left.

This position gets adjusted by the bubble offset. It is
either added or substracted, depending on the fac-
ing direction of the character. By definition, positive
values move the bubble away from the character (in
the facing direction).

To avoid drawing our bubble partially outside of the
screen or too close to the edge, we check the dis-
tance to the left and right edges of the screen. If the
bubble gets too far to the left, we change the posi-
tion and put it as far left as possible. The same goes
for the right edge. There’s a min_distance setting
available in our script to prevent the bubble from
sticking to the edge.

Vertical bubble position

We added two vertical alignment options (align_v):
“top” and “bottom”. This setting also defines,
whether the bubble pointer will be placed at the
bottom edge of the bubble, pointing downwards, or
on the top edge, pointing upwards.

The math is basically the same as for the horizontal
position. First we substract the current
ScrollPosition from our initial position. In addi-
tion, we have to move the bubble upwards by its
height, if the alignment is set to “top”. Then we add
the vertical offset. Positive values are defined to
move the bubble down, so we don’t have to differ-
entiate between the alignments.

And finally we make sure the bubble is drawn on-
screen by adjusting the position if needed.

4.4 Main bubble graphics

The game developer has to provide the graphics for
the bubble and add the file path to the
bubble_style table. We can now load this file.

Since each text has different dimensions, the speech
bubble has to be variable in size. But just stretching
and shrinking the graphic would distort it.

Instead we use the “ninerect” technique. That
means, the graphic file gets split up into nine pieces
(tiles), which are individually scaled and then re-
assembled to match the calculated bubble size. The
advantage of this technique is that the corners
won’t get stretched but keep their original aspect
ratio, and outlines keep their width, too (see the pic-
ture at the bottom of this page).

It also means, that there are limitations to what the
bubbles can look like. It is not possible with this
script to have elliptical or fancy-shaped bubbles.
They need to be more or less rectangular, but may
have rounded or chamfered corners.

if bubble_style.align_v == "bottom" then
pos.y = pos.y - game.ScrollPosition.y +
bubble_style.bubble_offset_y
else
pos.y = pos.y - game.ScrollPosition.y -
bubble_dim.y + bubble_style.bubble_offset_y
end

if pos.y < min_distance then
pos.y = min_distance
elseif pos.y > game.WindowResolution.y -
bubble_dim.y - min_distance then
pos.y = game.WindowResolution.y -
bubble_dim.y - min_distance
end

local sprite =
graphics.loadFromFile(bubble_style.file_bubble)

if pos.x < min_distance then
pos.x = min_distance

elseif pos.x > game.WindowResolution.x -
bubble_dim.x - min_distance then
pos.x = game.WindowResolution.x -
bubble_dim.x - min_distance

end

if char_facing == "left" then
pos.x = pos.x - bubble_style.bubble_offset_x

else
pos.x = pos.x + bubble_style.bubble_offset_x

end

if bubble_style.align_h == "right"
or (bubble_style.align_h == "char_facing"
and char_facing == "right") then
pos.x = pos.x - game.ScrollPosition.x

elseif bubble_style.align_h == "left"
or (bubble_style.align_h == "char_facing"
and char_facing == "left") then
pos.x = pos.x - game.ScrollPosition.x -
bubble_dim.x

else -- center
pos.x = pos.x - game.ScrollPosition.x -
bubble_dim.x / 2

end

4 5 6
7 8 9

1 2 3

Hel�� ��ve���r� �o�l�!

The ninerect technique: the bubble graphic is split up, the tiles (except the corners) are scaled to match the desired dimensions, and everything is put together again.

Visionaire Studio 5.x: Argo Bubbles tutorial 5

The graphics object offers a special function for the
ninerect technique. We need to tell it two things:
how to split up the sprite and how and where to put
it back together. The latter is defined in the
dest_rect variable: it gets the speech bubble posi-
tion and dimensionswe just calculated. The splitting
of the ninerect graphic depends on how the graphic
had been created and thus has to be defined in the
bubble_style table: “x”and“y”arewidth and height
of the top left corner (tile no. 1), “width”and“height”
mean width and height of the center tile (no. 5).

The drawSpriteWithNineRect() function expects
two more parameters: a color value to tint the
graphic and an alpha value. We added the tint op-
tion to our bubble_style, but did not make use of
the alpha (both can be achieved by creating the
graphics appropriately anyway).

At this point of development the drawing of the
bubble itself is already working. It just misses the
text and the pointer.

4.5 The pointer

Depending on the horizontal and vertical align-
ments of the bubble as well as the facing direction
of the character, our script will attach one of four
different pointers to the bubble, either pointing
downwards right, downwards left, upwards right or
upwards left. The game developer needs to provide
those four graphic files (if he wants to make use of
all of them). Our script has to decide, which file to
use and where to put it.

Select and load the pointer

If the bubble is aligned to the top, we need the
pointer pointing downwards and vice versa. The
horizontal pointing direction (left/right) is deter-
mined by the facing direction of the character: if he
looks left, the pointer points to the right and vice
versa…unless the horizontal alignment of the bub-
ble is set to “left” or “right”. For these cases we have
already forced the char_facing variable to face the
bubble, even if the character actually looks the
other way (see chapter 4.1).

Based on facing direction and vertical bubble align-
ment, we can load the appropriate pointer file and
save it in our pointer variable. The game developer
has the option of not having a pointer attached to
his speech bubbles though. He may set the file path
in his bubble_style to nil or attach an empty string.
To avoid a script error, we wrap an if condition
around our file loading code to check for that.

We provided each of the four pointers with its own
horizontal offset setting. When loading the selected
file, we also save this offset from the bubble_style
table in the pointer_offset variable to use it later
when positioning the pointer. Like for the bubble it-
self, positive offset values will move the pointer in
the facing direction. That’s why we reverse the sign
of the value for right pointing pointers.

Horizontal pointer position

If we were able to load a pointer file, we continue
with calculating its position. If not, we can skip the
rest of the pointer code.

local dest_rect = {
x = pos.x,
y = pos.y,
width = bubble_dim.x,
height = bubble_dim.y

}

local nine_rect = {
x = bubble_style.ninerect_x,
y = bubble_style.ninerect_y,
width = bubble_style.ninerect_width,
height = bubble_style.ninerect_height

}

graphics.drawSpriteWithNineRect(sprite, dest_rect,
nine_rect, bubble_style.color, 1.0)

local pointer = nil
local pointer_offset = 0

if char_facing == "left" then
if bubble_style.align_v == "bottom" then
if bubble_style.file_pointer_top_right ~= nil and
bubble_style.file_pointer_top_right ~= "" then
pointer = graphics.loadFromFile(
bubble_style.file_pointer_top_right)

pointer_offset =
-bubble_style.pointer_top_right_offset_x
end

else
if bubble_style.file_pointer_bottom_right ~= nil
and bubble_style.file_pointer_bottom_right ~= ""
then
pointer = graphics.loadFromFile(
bubble_style.file_pointer_bottom_right)

pointer_offset =
-bubble_style.pointer_bottom_right_offset_x
end

end
else
if bubble_style.align_v == "bottom" then
if bubble_style.file_pointer_top_left ~= nil and
bubble_style.file_pointer_top_left ~= "" then
pointer = graphics.loadFromFile(
bubble_style.file_pointer_top_left)

pointer_offset =
bubble_style.pointer_top_left_offset_x
end

else
if bubble_style.file_pointer_bottom_left ~= nil and
bubble_style.file_pointer_bottom_left ~= "" then
pointer = graphics.loadFromFile(
bubble_style.file_pointer_bottom_left)

pointer_offset =
bubble_style.pointer_bottom_left_offset_x
end

end
end

if pointer ~= nil then
-- Calculate pointer position
-– Draw the pointer
end

Visionaire Studio 5.x: Argo Bubbles tutorial 6

If our bubble is aligned to the right, we place the
pointer at the leftmost position, i. e. at the left edge
of the bubble (see examples 3 and 4 in the picture
on the right). That’s easy, because our x coordinate
then matches the pos.x value of the bubble – we
just have to add the pointer_offset variable.

However, if the character is standing in close dis-
tance to the right edge of the screen, the bubble
may get shifted to the left (remember, we adjusted
the bubble position to keep the min_distance). In
that case the pointer might end up left of the char-
acter pointing away from him. If that happens, we
set the pointer to the character’s position instead.

The code for the left aligned bubble looks similar,
just that we need to take the bubble and pointer
widths into account when placing the pointer right-
most. The pointer width is a property of the
pointer object.

Last thing are the centered bubbles. They just get
their pointers centered at the character’s position.

Here’s the full code for the horizontal position:

Vertical pointer position

There are two possible values for the vertical align-
ment: top bubbles will have their pointers at the
bottom, bottom bubbles will have them at the top.
So we need the y coordinate of the top and bottom
edges of the speech bubble. For pointers that go on
top, we need to substract their height.

For both options there is a vertical offset value de-
fined in the bubble_style table. That’s because
when you have outlines around bubble and pointer,
you don’t want to put the two graphics just next to
each other. The pointer has to overlap the bubble in
order to cover the bubble outline. That makes both
graphics look like one object.

Draw the pointer

Last thing to do is draw the pointer through the
drawSprite() function. The position is a property
of the pointer object itself.

4.6 Adding the text

Now we have the perfect empty speech bubble. It’s
at the right position and has the right size, nice
pointer included – it just lacks the text.

local pointer_pos = {x = 0, y = 0}

if bubble_style.align_h == "right" or
(bubble_style.align_h == "char_facing" and
char_facing == "right") then
pointer_pos.x = pos.x + pointer_offset

if pointer_pos.x < char.Position.x -
game.ScrollPosition.x + pointer_offset then
pointer_pos.x = char.Position.x -
game.ScrollPosition.x + pointer_offset
end

end

pointer_pos.x = pos.x + bubble_dim.x -
pointer.width + pointer_offset

local pointer_pos = {x = 0, y = 0}

if bubble_style.align_h == "right" or
(bubble_style.align_h == "char_facing" and
char_facing == "right") then
pointer_pos.x = pos.x + pointer_offset

if pointer_pos.x < char.Position.x -
game.ScrollPosition.x + pointer_offset then
pointer_pos.x = char.Position.x -
game.ScrollPosition.x + pointer_offset
end

elseif bubble_style.align_h == "left" or
(bubble_style.align_h == "char_facing" and
char_facing == "left") then
pointer_pos.x = pos.x + bubble_dim.x -
pointer.width + pointer_offset

if pointer_pos.x > char.Position.x -
game.ScrollPosition.x + pointer_offset then
pointer_pos.x = char.Position.x -
game.ScrollPosition.x + pointer_offset
end

else -- center
pointer_pos.x = char.Position.x -
game.ScrollPosition.x + pointer_offset

end

if bubble_style.align_v == "bottom" then
pointer_pos.y = pos.y - pointer.height +
bubble_style.pointer_top_offset_y
else
pointer_pos.y = pos.y + bubble_dim.y -
bubble_style.pointer_bottom_offset_y
end

pointer.position = {
x = pointer_pos.x,
y = pointer_pos.y
}

graphics.drawSprite(pointer, 1.0,
bubble_style.color)

Bubble: top, center
Char facing: left

Pointer: bottom right

Bubble: top, right
Char facing: right
Pointer: bottom left

Bubble: top, right
Char facing: left

Pointer: bottom left

Bubble: bottom, center
Char facing: right
Pointer: top left1

2

3 4

Some bubble positioning scenarios with different pointers

Visionaire Studio 5.x: Argo Bubbles tutorial 7

The text is stored in the lines table. After setting the
font property of the graphics object to match the
character’s font, we loop through that table and
draw each line at the intended position.

Again we have to do some position calculations. We
know the position of the top left corner of the bub-
ble, stored in the pos variable, and need to add the
top and left padding, respectively, to get the posi-
tion of our text box.

If there is only one line of text, it will fit perfectly in
our bubble. If there are multiple lines, we have to
take the text_align property of the bubble_style
table into account.

Possible text alignments are “left”, “right” and “cen-
ter”. If aligned to the “left”, the line will start at the
text box position. If it’s “right”, we have to move it by
the difference of text box width and line width to
the right. And for “centered” lines we move it half
that way. The width of the current line is calculated
through the fontDimension() function again.

The vertical position depends on the counting of
lines. The first line goes to the top, the second goes
one line height plus one line gap below that and so
on. The k parameter of the loop is counting the lines,
starting with 1.

The drawFont function expects integers for the posi-
tion, so we round our values with math.floor.

And that’s basically it!

5. Custom bubble styles

In our bubble creation process we haveworkedwith
the bubble_style table, where the game developer
defines the look and positioning of his bubbles. But
the Argo Bubbles script offers a way to definemore
than one style.

The table we called bubble_style so far is actually
called default_style. In addition to that, there is
another table called custom_styles. This table (if
not empty) may contain an unlimited number of
style tables with the same properties as the
default_style table. The difference is the addi-
tional char property, which is mandatory and has to
match the name of a character in the Visionaire
project. Only for this character will the particular
style apply.

As you can see in the example above, not all proper-
ties from the original default_style table are de-
fined, but only those that differ from the default val-
ues. And you can see that multiple styles can be de-
fined for the same character. The developer may
switch the style during the game.

5.1 Rebuilding the custom styles table

We built the custom_styles table the way you see
above, because we wanted to make it as easy to use
for the developer as possible. For internal use in the
script we create a new table called c_styles from it
that looks a bit different.

In that new table we collect all styles of the same
character, number them and put them in a table ta-
ble with the character name as key. That way, we can
later reference each style of a certain character by a
number. And we fill up the styles with the missing
values from the default_style table.

So the new table with the above example data
would look like this:

graphics.font = char.Font

for k, line in ipairs(lines) do
-- Calculate the position
-- Draw the line

end

local tempdim = graphics.fontDimension(line)
local text_pos = {x = 0, y = 0}

if bubble_style.text_align == "left" then
text_pos.x = pos.x + bubble_style.padding.left

elseif bubble_style.text_align == "right" then
text_pos.x = pos.x + bubble_style.padding.left +
text_dim.x - tempdim.x

else -- center
text_pos.x = pos.x + bubble_style.padding.left +
(text_dim.x - tempdim.x) / 2

end

text_pos.y = pos.y + bubble_style.padding.top +
(k - 1) * (char.Font.Size +
char.Font.VerticalLetterSpacing)

graphics.drawFont(line,
math.floor(text_pos.x),
math.floor(text_pos.y),
1.0

)

-- example data
local custom_styles = {
{
char = "Hero",
align_h = "char_facing",
pointer_bottom_left_offset_x = 20,
pointer_bottom_right_offset_x = 20

},
{
char = "Witch",
align_v = "bottom",
bubble_offset_y = 100

},
{
char = "Hero",
color = 0xfbefb6,
file_pointer_bottom_left = ""

}
}

Visionaire Studio 5.x: Argo Bubbles tutorial 8

For creating the c_styles table from the
custom_styles table, we loop through the latter,
add a table for the character, if it doesn’t already ex-
ist and another table inside it that gets a number.
Thenwe loop through the default_style table and
add all its properties to the new character table. Last
step is loop through the current custom style and
overwrite the default values with the custom ones.

Well, that sounds complicated, but it’s difficult to de-
scribe. Have a look at the actual code…

5.2 Choosing the style

Before starting to create our bubble, we have to de-
cide which bubble style to use: the default one or
one of the custom styles. Thismust happen after set-
ting the char variable (because we need to know
whose custom styles to look for) and before setting
the char_facing variable (because that depends on
settings in the style). So the following code block
belongs between the two blocks in chapter 4.1.

First we set our well-known bubble_style variable
to the default_style. If there is no custom style de-
fined at all or at least no custom style for that partic-
ular character, we’re done. The default style will then
be used.

If there is a custom style for the current character, we
look for a Visionaire value called “argo_bubble” that
comes with the character. The developer can use
this to choose between multiple styles for the char-
acter by setting a number corresponding to the
c_styles table. If that value does not exist, we take
the first custom style for the character and put it in
our bubble_style variable. If it does, we check for
the number and get the corresponding custom
style. If the value is set to a number that does not
correspond to a style, we keep the default style. This
is a way for the developer to have a character use
both the default and a custom style during the
game: just switch between an existing and a non-
existing number.

After that we continue with the table stored in the
bubble_style variable, as we did in the whole of
chapter 4.

-- example data
c_styles = {
["Hero"] = {
[1] = {
char = "Hero",
align_h = "char_facing",
pointer_bottom_left_offset_x = 20,
pointer_bottom_right_offset_x = 20,
-- filled up with the default properties
},
[2] = {
char = "Hero",
color = 0xfbefb6,
file_pointer_bottom_left = "",
-- filled up with the default properties
}
},

["Witch"] = {
[1] = {
char = "Witch",
align_v = "bottom",
bubble_offset_y = 100,
-- filled up with the default properties
}
}

}

local c_styles = {}

if custom_styles ~= nil then
for key, styles in pairs(custom_styles) do
local num_char_styles = 1

if c_styles[styles["char"]] ~= nil then
num_char_styles = #c_styles[styles["char"]] + 1
c_styles[styles["char"]][num_char_styles] = {}
else
c_styles[styles["char"]] = {{}}
end

for k, v in pairs(default_style) do
c_styles[styles["char"]][num_char_styles][k] = v
end

for k, v in pairs(styles) do
c_styles[styles["char"]][num_char_styles][k] = v
end
end

end

local bubble_style = default_style

if c_styles ~= nil and
c_styles[char.name] ~= nil then
if Characters[char.name].Values["argo_bubble"] ~=
nil then
if c_styles[char.name][Characters[char.name].
Values["argo_bubble"].Int] ~= nil then
bubble_style = c_styles[char.name][
Characters[char.name].Values["argo_bubble"].Int]
end

else
bubble_style = c_styles[char.name][1]

end
end

Visionaire Studio 5.x: Argo Bubbles tutorial 9

6. Some handler options

To make it easier to integrate the Argo Bubbles
script into a Visionaire project, we added the ability
to deactivate the bindings to the event handlers.

Since it is only possible to register event handlers
once in a project, one may choose to do that else-
where, not in this script. The ab_bind_to_handlers
boolean is a convenient way to do this without
messing around with the main code. The developer
would then have to call show_argo_bubble(text)
and destroy_argo_bubble(text) manually from
that other place.

And for anyone who wants do do it the other way
around, there is an option to add external functions
to those two event handlers through this script.

function ab_on_text_started(text)
-- add your functions here

end

function ab_on_text_stopped(text)
-- add your functions here

end

function show_argo_bubble(text)
... -- see chapter 2 for rest of the function

if ab_on_text_started ~= nil then
ab_on_text_started(text)

end
end

function destroy_argo_bubble(text)
... -- see chapter 2 for rest of the function

if ab_on_text_stopped ~= nil then
ab_on_text_stopped(text)

end
end

if ab_bind_to_handlers then
registerEventHandler("textStarted",
"show_argo_bubble")
registerEventHandler("textStopped",
"destroy_argo_bubble")

end

local ab_bind_to_handlers = true -- or false

Written by Einzelkämpfer, September 2022
Based on Argo Bubbles version 2.1.2

Sorry for any quirky English, I triedmy best.

“The Argonauts”have created adventure games
with Visionaire Studio for fun since 2020:

https://the-argonauts.itch.io/

